Well done!
Question:
The rate of respiration decreases with temperature.
Response:
Photosynthesis of a tree canopy is driven or influenced by
air humidity (VPD).
air temperature (T).
the total leaf area (LAI).
photosynthetically active solar radiation (PAR).
soil moisture (REW).
atmospheric CO2.
The effect of light on photosynthesis has a clear saturating pattern: more light results in more photosynthesis but eventually leaves cannot take full advantage of all the extra light.
As plants respire, they release
oxygen.
carbon dioxide.
To transform atmospheric CO2 into organic molecules, plants can use the energy from
soil nutrients.
sun light.
atmospheric oxygen.
soil heat.
Plants open its stomata to avoid losing too much water.
Plant closes its stomata to avoid losing too much water.
Carbon becomes locked as part of the accumulating plant biomass as plants grow.
At low air humidity, a plant closes its stomata to prevent transpiration. The action also decreases photosynthesis
A complex microbiota lives belowground, releasing carbon dioxide to the soil.
High soil moisture leads to decreased photosynthesis.
In boreal upland forests, low soil moisture decreases the rate of photosynthesis.
Leaf area increases with stand age, resulting in a decreasing rate of photosynthesis in the stand.
An increment in leaf area increases also the photosynthesis of a tree stand. However, the relationship is saturating.
De-hardening in spring involves gradual re-hydration of the cells, recovery of photosynthetic capacity and a tight control of water loss.
Photoinhibition means the decrease in photosynthesis due to
exposure to high temperature.
exposure to shortage of soil moisture.
exposure to excess of CO2.
exposure to excess of light.
Early spring is a tricky time for plants due to the combination of sunny but still quite cold days.
Plant respiration captures CO2.
Unlike photosynhesis, plant respiration captures atmospheric oxygen and releases carbon dioxide.